Select Page

You know from the adjective that it’s probably not good, but what exactly is “dirty data”?

“I know what you did in your last Marketing campaign, do you?”

Jalena Pineda

Business Development Manager, Skillz Middle East

Simply put, it’s data that has errors or mistakes, or it’s incomplete in some way. And 30% of marketing and sales data is totally unusable, according to an infographic released by Umbel.

Dirty data comes at a cost to companies; but, if you’re not a data scientist, how do you even diagnose that you have a problem?

Less risqué than Dirty Dancing, less provocative than Dirty Diana—dirty data is something you want to keep away from your company. You know the name that’s it’s probably not good, but what is dirty data?

Simply put, it’s data that has errors, mistakes, and is incomplete in some way. And it’s costing you and your company money. Chances are you, or at least someone at your company knows that’s a problem, but more than 90 percent of companies still aren’t keeping their data clean.

For marketers and salespeople, that’s 30 percent of data that becomes totally unusable. That comes through in missing emails, duplicate records, and inaccurate (or fake) audience and fan records. That’s a tough pill to swallow for live events like sports and festivals, which already have a tough time knowing fans who aren’t in their database.

Not keeping your data clean comes at a cost, but if you’re not a data scientist, how do you even diagnose that you have a problem? Luckily, Umbel’s Data Science team has seen (and cleaned) it all. Our data scientists recently came together to look at how you can diagnose dirty data with some tips on clean up across six areas.

Six areas

  • Completeness
  • Uniqueness
  • Consistency
  • Timeliness
  • Validity
  • Accuracy

In their discussion, they covered why some things are possible to fix after the fact, but also how you can save yourself headaches down the line with a solid data collection strategy from the very beginning. Beyond the don’ts, they also touched on: Basic principles of ‘Tidy Data’, Common data ‘gotchas’, Best practices for getting the most out of data sets.

The infographic outlines how the less tech-savvy among us can diagnose dirty data (and avoid it) across six areas.

Get started with cleaning up your data with this infographic. Just click or tap to view a larger version:

The Nitty-Gritty of Dirty Data [Infographic]

Share on Facebook2Share on Google+0Tweet about this on Twitter0Share on LinkedIn3Pin on Pinterest1Digg thisShare on StumbleUpon0Share on Tumblr0Share on Reddit0Share on VKShare on Yummly0Buffer this pageFlattr the authorEmail this to someone
Subscribe To Our Blog!!

Subscribe To Our Blog!!

We have daily a fresh blog for you, read about Digital Marketing, Technology, Business, Lifestyle and nice Infographics, sign up now!!!

You have Successfully Subscribed!